CONTENTS

Preface xix
How to use this book xxv
Acknowledgements xxx
Dedication xxxiii
Symbols used in this book xxxiv
Some maths revision xxxvi

1 Why is my evil lecturer forcing me to learn statistics? 1
 1.1. What will this chapter tell me? 1
 1.2. What the hell am I doing here? I don't belong here 1
 1.2.1. The research process 1
 1.3. Initial observation: finding something that needs explaining 1
 1.4. Generating theories and testing them 1
 1.5. Collect data to test your theory 1
 1.5.1. Variables 1
 1.5.2. Measurement error 1
 1.5.3. Validity and reliability 1
 1.5.4. Correlational research methods 1
 1.5.5. Experimental research methods 1
 1.5.6. Randomization 1
 1.6. Analysing data 1
 1.6.1. Frequency distributions 1
 1.6.2. The centre of a distribution 1
 1.6.3. The dispersion in a distribution 1
 1.6.4. Using a frequency distribution to go beyond the data 1
 1.6.5. Fitting statistical models to the data 1
 1.7. Reporting data 1
 1.7.1. Dissemination of research 1
 1.7.2. Knowing how to report data 1
 1.7.3. Some initial guiding principles 1
 1.8. Brian's attempt to woo Jane 1
 1.9. What next? 1
 1.10. Key terms that I've discovered 1
 1.11. Smart Alex's tasks 1
 1.12. Further reading 1
CONTENTS

2 Everything you never wanted to know about statistics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. What will this chapter tell me?</td>
<td>40</td>
</tr>
<tr>
<td>2.2. Building statistical models</td>
<td>41</td>
</tr>
<tr>
<td>2.3. Populations and samples</td>
<td>42</td>
</tr>
<tr>
<td>2.4. Statistical models</td>
<td>44</td>
</tr>
<tr>
<td>2.4.1. The mean as a statistical model</td>
<td>46</td>
</tr>
<tr>
<td>2.4.2. Assessing the fit of a model: sums of squares and variance revisited</td>
<td>46</td>
</tr>
<tr>
<td>2.4.3. Estimating parameters</td>
<td>50</td>
</tr>
<tr>
<td>2.5. Going beyond the data</td>
<td>51</td>
</tr>
<tr>
<td>2.5.1. The standard error</td>
<td>52</td>
</tr>
<tr>
<td>2.5.2. Confidence intervals</td>
<td>54</td>
</tr>
<tr>
<td>2.6. Using statistical models to test research questions</td>
<td>60</td>
</tr>
<tr>
<td>2.6.1. Null hypothesis significance testing</td>
<td>60</td>
</tr>
<tr>
<td>2.6.2. Problems with NHST</td>
<td>74</td>
</tr>
<tr>
<td>2.7. Modern approaches to theory testing</td>
<td>78</td>
</tr>
<tr>
<td>2.7.1. Effect sizes</td>
<td>79</td>
</tr>
<tr>
<td>2.7.2. Meta-analysis</td>
<td>83</td>
</tr>
<tr>
<td>2.8. Reporting statistical models</td>
<td>84</td>
</tr>
<tr>
<td>2.9. Brian's attempt to woo Jane</td>
<td>85</td>
</tr>
<tr>
<td>2.10. What next?</td>
<td>86</td>
</tr>
<tr>
<td>2.11. Key terms that I've discovered</td>
<td>87</td>
</tr>
<tr>
<td>2.12. Smart Alex's tasks</td>
<td>87</td>
</tr>
<tr>
<td>2.13. Further reading</td>
<td>88</td>
</tr>
</tbody>
</table>

3 The IBM SPSS Statistics environment

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. What will this chapter tell me?</td>
<td>89</td>
</tr>
<tr>
<td>3.2. Versions of IBM SPSS Statistics</td>
<td>90</td>
</tr>
<tr>
<td>3.3. Windows versus MacOS</td>
<td>90</td>
</tr>
<tr>
<td>3.4. Getting started</td>
<td>90</td>
</tr>
<tr>
<td>3.5. The data editor</td>
<td>91</td>
</tr>
<tr>
<td>3.5.1. Entering data into the data editor</td>
<td>98</td>
</tr>
<tr>
<td>3.5.2. The variable view</td>
<td>99</td>
</tr>
<tr>
<td>3.5.3. Missing values</td>
<td>107</td>
</tr>
<tr>
<td>3.6. Importing data</td>
<td>109</td>
</tr>
<tr>
<td>3.7. The SPSS viewer</td>
<td>109</td>
</tr>
<tr>
<td>3.8. Exporting SPSS output</td>
<td>113</td>
</tr>
<tr>
<td>3.9. The syntax editor</td>
<td>113</td>
</tr>
<tr>
<td>3.10. Saving files</td>
<td>115</td>
</tr>
<tr>
<td>3.11. Retrieving a file</td>
<td>115</td>
</tr>
<tr>
<td>3.12. Brian's attempt to woo Jane</td>
<td>116</td>
</tr>
<tr>
<td>3.13. What next?</td>
<td>117</td>
</tr>
<tr>
<td>3.14. Key terms that I've discovered</td>
<td>117</td>
</tr>
<tr>
<td>3.15. Smart Alex's tasks</td>
<td>117</td>
</tr>
<tr>
<td>3.16. Further reading</td>
<td>120</td>
</tr>
</tbody>
</table>

4 Exploring data with graphs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. What will this chapter tell me?</td>
<td>121</td>
</tr>
<tr>
<td>4.2. The art of presenting data</td>
<td>122</td>
</tr>
<tr>
<td>4.2.1. What makes a good graph?</td>
<td>122</td>
</tr>
<tr>
<td>4.2.2. Lies, damned lies, and ... erm ... graphs</td>
<td>123</td>
</tr>
</tbody>
</table>
4.3. The SPSS chart builder 125
4.4. Histograms 127
4.5. Boxplots (box-whisker diagrams) 131
4.6. Graphing means: bar charts and error bars 135
 4.6.1. Simple bar charts for independent means 136
 4.6.2. Clustered bar charts for independent means 137
 4.6.3. Simple bar charts for related means 140
 4.6.4. Clustered bar charts for related means 143
 4.6.5. Clustered bar charts for ‘mixed’ designs 145
4.7. Line charts 148
4.8. Graphing relationships: the scatterplot 148
 4.8.1. Simple scatterplot 149
 4.8.2. Grouped scatterplot 151
 4.8.3. Simple and grouped 3-D scatterplots 153
 4.8.4. Matrix scatterplot 154
 4.8.5. Simple dot plot or density plot 157
 4.8.6. Drop-line graph 157
4.9. Editing graphs 158
4.10. Brian’s attempt to woo Jane 161
4.11. What next? 161
4.12. Key terms that I’ve discovered 161
4.13. Smart Alex’s tasks 162
4.14. Further reading 162

5 The beast of bias 163
5.1. What will this chapter tell me? 163
5.2. What is bias? 164
 5.2.1. Assumptions 165
 5.2.2. Outliers 165
 5.2.3. Additivity and linearity 167
 5.2.4. Normally distributed something or other 168
 5.2.5. Homoscedasticity/homogeneity of variance 172
 5.2.6. Independence 176
5.3 Spotting bias 176
 5.3.1. Spotting outliers 176
 5.3.2. Spotting normality 179
 5.3.3. Spotting linearity and homoscedasticity/heterogeneity of variance 192
5.4. Reducing bias 196
 5.4.1. Trimming the data 196
 5.4.2. Winsorizing 198
 5.4.3. Robust methods 198
 5.4.4. Transforming data 201
5.5. Brian’s attempt to woo Jane 210
5.6. What next? 210
5.7. Key terms that I’ve discovered 211
5.8. Smart Alex’s tasks 211
5.9. Further reading 212

6 Non-parametric models 213
6.1. What will this chapter tell me? 213
6.2. When to use non-parametric tests 214
6.3. General procedure of non-parametric tests in SPSS

6.4. Comparing two independent conditions: the Wilcoxon rank-sum test and
Mann–Whitney test

6.4.1. Theory

6.4.2. Inputting data and provisional analysis

6.4.3. The Mann–Whitney test using SPSS

6.4.4. Output from the Mann–Whitney test

6.4.5. Calculating an effect size

6.4.6. Writing the results

6.5. Comparing two related conditions:
the Wilcoxon signed-rank test

6.5.1. Theory of the Wilcoxon signed-rank test

6.5.2. Running the analysis

6.5.3. Output for the ecstasy group

6.5.4. Output for the alcohol group

6.5.5. Calculating an effect size

6.5.6. Writing the results

6.6. Differences between several independent groups: the Kruskal–Wallis test

6.6.1. Theory of the Kruskal–Wallis test

6.6.2. Follow-up analysis

6.6.3. Inputting data and provisional analysis

6.6.4. Doing the Kruskal–Wallis test in SPSS

6.6.5. Output from the Kruskal–Wallis test

6.6.6. Testing for trends: the Jonckheere–Terpstra test

6.6.7. Calculating an effect size

6.6.8. Writing and interpreting the results

6.7. Differences between several related groups: Friedman’s ANOVA

6.7.1. Theory of Friedman’s ANOVA

6.7.2. Inputting data and provisional analysis

6.7.3. Doing Friedman’s ANOVA in SPSS

6.7.4. Output from Friedman’s ANOVA

6.7.5. Following-up Friedman’s ANOVA

6.7.6. Calculating an effect size

6.7.7. Writing and interpreting the results

6.8. Brian’s attempt to woo Jane

6.9. What next?

6.10. Key terms that I’ve discovered

6.11. Smart Alex’s tasks

6.12. Further reading

7 Correlation

7.1. What will this chapter tell me?

7.2. Modelling relationships

7.2.1. A detour into the murky world of covariance

7.2.2. Standardization and the correlation coefficient

7.2.3. The significance of the correlation coefficient

7.2.4. Confidence intervals for r

7.2.5. A word of warning about interpretation: causality

7.3. Data entry for correlation analysis using SPSS

7.4. Bivariate correlation

7.4.1. General procedure for running correlations in SPSS

7.4.2. Pearson’s correlation coefficient

7.4.3. Spearman’s correlation coefficient
9 Comparing two means

9.1. What will this chapter tell me? ①
9.2. Looking at differences ①
 9.2.1. An example: are invisible people mischievous? ①
 9.2.2. Categorical predictors in the linear model ①
9.3. The t-test ①
 9.3.1. Rationale for the t-test ①
 9.3.2. The independent t-test equation explained ①
 9.3.3. The paired-samples t-test equation explained ①
9.4. Assumptions of the t-test ①
9.5. The independent t-test using SPSS ①
 9.5.1. The general procedure ①
 9.5.2. Exploring data and testing assumptions ①
 9.5.3. Compute the independent t-test ①
 9.5.4. Output from the independent t-test ①
 9.5.5. Calculating the effect size ①
 9.5.6. Reporting the independent t-test ①
9.6. Paired-samples t-test using SPSS ①
 9.6.1. Entering data ①
 9.6.2. Exploring data and testing assumptions ①
 9.6.3. Computing the paired-samples t-test ①
 9.6.4. Calculating the effect size ①
 9.6.5. Reporting the paired-samples t-test ①
9.7. Between groups or repeated measures? ①
9.8. What if I violate the test assumptions? ②
9.9. Brian's attempt to woo Jane ①
9.10. What next? ①
9.11. Key terms that I've discovered
9.12. Smart Alex's tasks
9.13. Further reading

10 Moderation, mediation and more regression

10.1. What will this chapter tell me? ①
10.2. Installing custom dialog boxes in SPSS ②
10.3. Moderation: interactions in regression ③
 10.3.1. The conceptual model ③
 10.3.2. The statistical model ②
 10.3.3. Centring variables ②
 10.3.4. Creating interaction variables ②
 10.3.5. Following up an interaction effect ②
 10.3.6. Running the analysis ②
 10.3.7. Output from moderation analysis ②
 10.3.8. Reporting moderation analysis ②
10.4. Mediation ②
11 Comparing several means: ANOVA (GLM 1)

11.1. What will this chapter tell me? (1)

11.2. The theory behind ANOVA (2)
- 11.2.1. Using a linear model to compare means (2)
- 11.2.2. Logic of the F-ratio (2)
- 11.2.3. Total sum of squares (SS,) (2)
- 11.2.4. Model sum of squares (SS,) (2)
- 11.2.5. Residual sum of squares (SS,) (2)
- 11.2.6. Mean squares (2)
- 11.2.7. The F-ratio (2)
- 11.2.8. Interpreting F (2)

11.3. Assumptions of ANOVA (3)
- 11.3.1. Homogeneity of variance (2)
- 11.3.2. Is ANOVA robust? (3)
- 11.3.3. What to do when assumptions are violated (2)

11.4. Planned contrasts (2)
- 11.4.1. Choosing which contrasts to do (2)
- 11.4.2. Defining contrasts using weights (2)
- 11.4.3. Non-orthogonal comparisons (2)
- 11.4.4. Standard contrasts (2)
- 11.4.5. Polynomial contrasts: trend analysis (2)

11.5. Post hoc procedures (2)
- 11.5.1. Type I and Type II error rates for post hoc tests (2)
- 11.5.2. Are post hoc procedures robust? (2)
- 11.5.3. Summary of post hoc procedures (2)

11.6. Running one-way ANOVA in SPSS (2)
- 11.6.1. General procedure of one-way ANOVA (3)
- 11.6.2. Planned comparisons using SPSS (2)
- 11.6.3. Post hoc tests in SPSS (2)
- 11.6.4. Options (2)
- 11.6.5. Bootstrapping (2)

11.7. Output from one-way ANOVA (2)
- 11.7.1. Output for the main analysis (2)
- 11.7.2. Output for planned comparisons (2)
- 11.7.3. Output for post hoc tests (2)

11.8. Calculating the effect size (2)

11.9. Reporting results from one-way independent ANOVA (2)

11.10. Key terms that I’ve discovered

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.1. The conceptual model (2)</td>
<td>408</td>
</tr>
<tr>
<td>10.4.2. The statistical model (2)</td>
<td>409</td>
</tr>
<tr>
<td>10.4.3. Effect sizes of mediation (3)</td>
<td>411</td>
</tr>
<tr>
<td>10.4.4. Running the analysis (2)</td>
<td>413</td>
</tr>
<tr>
<td>10.4.5. Output from mediation analysis (2)</td>
<td>414</td>
</tr>
<tr>
<td>10.4.6. Reporting mediation analysis (2)</td>
<td>418</td>
</tr>
<tr>
<td>10.5. Categorical predictors in regression (3)</td>
<td>419</td>
</tr>
<tr>
<td>10.5.1. Dummy coding (3)</td>
<td>419</td>
</tr>
<tr>
<td>10.5.2. SPSS output for dummy variables (3)</td>
<td>422</td>
</tr>
<tr>
<td>10.6. Brian’s attempt to woo Jane (1)</td>
<td>426</td>
</tr>
<tr>
<td>10.7. What next? (1)</td>
<td>427</td>
</tr>
<tr>
<td>10.8. Key terms that I’ve discovered</td>
<td>427</td>
</tr>
<tr>
<td>10.9. Smart Alex’s tasks</td>
<td>427</td>
</tr>
<tr>
<td>10.10. Further reading</td>
<td>428</td>
</tr>
<tr>
<td>11.1. What will this chapter tell me? (1)</td>
<td>429</td>
</tr>
<tr>
<td>11.2. The theory behind ANOVA (2)</td>
<td>430</td>
</tr>
<tr>
<td>11.2.1. Using a linear model to compare means (2)</td>
<td>430</td>
</tr>
<tr>
<td>11.2.2. Logic of the F-ratio (2)</td>
<td>434</td>
</tr>
<tr>
<td>11.2.3. Total sum of squares (SS,) (2)</td>
<td>436</td>
</tr>
<tr>
<td>11.2.4. Model sum of squares (SS,) (2)</td>
<td>438</td>
</tr>
<tr>
<td>11.2.5. Residual sum of squares (SS,) (2)</td>
<td>439</td>
</tr>
<tr>
<td>11.2.6. Mean squares (2)</td>
<td>440</td>
</tr>
<tr>
<td>11.2.7. The F-ratio (2)</td>
<td>441</td>
</tr>
<tr>
<td>11.2.8. Interpreting F (2)</td>
<td>442</td>
</tr>
<tr>
<td>11.3. Assumptions of ANOVA (3)</td>
<td>442</td>
</tr>
<tr>
<td>11.3.1. Homogeneity of variance (2)</td>
<td>442</td>
</tr>
<tr>
<td>11.3.2. Is ANOVA robust? (3)</td>
<td>444</td>
</tr>
<tr>
<td>11.3.3. What to do when assumptions are violated (2)</td>
<td>445</td>
</tr>
<tr>
<td>11.4. Planned contrasts (2)</td>
<td>445</td>
</tr>
<tr>
<td>11.4.1. Choosing which contrasts to do (2)</td>
<td>446</td>
</tr>
<tr>
<td>11.4.2. Defining contrasts using weights (2)</td>
<td>449</td>
</tr>
<tr>
<td>11.4.3. Non-orthogonal comparisons (2)</td>
<td>454</td>
</tr>
<tr>
<td>11.4.4. Standard contrasts (2)</td>
<td>456</td>
</tr>
<tr>
<td>11.4.5. Polynomial contrasts: trend analysis (2)</td>
<td>457</td>
</tr>
<tr>
<td>11.5. Post hoc procedures (2)</td>
<td>458</td>
</tr>
<tr>
<td>11.5.1. Type I and Type II error rates for post hoc tests (2)</td>
<td>458</td>
</tr>
<tr>
<td>11.5.2. Are post hoc procedures robust? (2)</td>
<td>459</td>
</tr>
<tr>
<td>11.5.3. Summary of post hoc procedures (2)</td>
<td>459</td>
</tr>
<tr>
<td>11.6. Running one-way ANOVA in SPSS (2)</td>
<td>460</td>
</tr>
<tr>
<td>11.6.1. General procedure of one-way ANOVA (3)</td>
<td>460</td>
</tr>
<tr>
<td>11.6.2. Planned comparisons using SPSS (2)</td>
<td>462</td>
</tr>
<tr>
<td>11.6.3. Post hoc tests in SPSS (2)</td>
<td>463</td>
</tr>
<tr>
<td>11.6.4. Options (2)</td>
<td>464</td>
</tr>
<tr>
<td>11.6.5. Bootstrapping (2)</td>
<td>465</td>
</tr>
<tr>
<td>11.7. Output from one-way ANOVA (2)</td>
<td>466</td>
</tr>
<tr>
<td>11.7.1. Output for the main analysis (2)</td>
<td>466</td>
</tr>
<tr>
<td>11.7.2. Output for planned comparisons (2)</td>
<td>469</td>
</tr>
<tr>
<td>11.7.3. Output for post hoc tests (2)</td>
<td>470</td>
</tr>
<tr>
<td>11.8. Calculating the effect size (2)</td>
<td>472</td>
</tr>
<tr>
<td>11.9. Reporting results from one-way independent ANOVA (2)</td>
<td>474</td>
</tr>
<tr>
<td>11.10. Key terms that I’ve discovered</td>
<td>475</td>
</tr>
</tbody>
</table>
12 Analysis of covariance, ANCOVA (GLM 2)

12.1. What will this chapter tell me? 2
12.2. What is ANCOVA? 2
12.3. Assumptions and issues in ANCOVA 3
 12.3.1. Independence of the covariate and treatment effect 3
 12.3.2. Homogeneity of regression slopes 3
 12.3.3. What to do when assumptions are violated 3
12.4. Conducting ANCOVA in SPSS 2
 12.4.1. General procedure 1
 12.4.2. Inputting data 1
 12.4.3. Testing the independence of the treatment variable and covariate 2
 12.4.4. The main analysis 2
 12.4.5. Contrasts 2
 12.4.6. Other options 2
 12.4.7. Bootstrapping and plots 2
12.5. Interpreting the output from ANCOVA 2
 12.5.1. What happens when the covariate is excluded? 2
 12.5.2. The main analysis 2
 12.5.3. Contrasts 2
 12.5.4. Interpreting the covariate 2
12.6. Testing the assumption of homogeneity of regression slopes 3
12.7. Calculating the effect size 2
12.8. Reporting results 2
12.9. Brian’s attempt to woo Jane 1
12.10. What next? 2
12.11. Key terms that I’ve discovered
12.12. Smart Alex’s tasks
12.13. Further reading

13 Factorial ANOVA (GLM 3)

13.1. What will this chapter tell me? 2
13.2. Theory of factorial ANOVA (independent designs) 2
 13.2.1. Factorial designs 2
 13.2.2. Guess what? Factorial ANOVA is a linear model 3
 13.2.3. Two-way ANOVA: behind the scenes 2
 13.2.4. Total sums of squares (SS,) 2
 13.2.5. Model sum of squares, SS_M 2
 13.2.6. The residual sum of squares, SS_r 2
 13.2.7. The F-ratios 2
13.3. Assumptions of factorial ANOVA 3
13.4. Factorial ANOVA using SPSS 2
 13.4.1. General procedure for factorial ANOVA 1
 13.4.2. Entering the data and accessing the main dialog box 2
 13.4.3. Graphing interactions 2
 13.4.4. Contrasts 2
 13.4.5. Post hoc tests 2
 13.4.6. Bootstrapping and other options 2
14 Repeated-measures designs (GLM 4)

14.1. What will this chapter tell me? 543
14.2. Introduction to repeated-measures designs 544
 14.2.1. The assumption of sphericity 545
 14.2.2. How is sphericity measured? 545
 14.2.3. Assessing the severity of departures from sphericity 546
 14.2.4. What is the effect of violating the assumption of sphericity? 546
 14.2.5. What do you do if you violate sphericity? 548
14.3. Theory of one-way repeated-measures ANOVA 548
 14.3.1. The total sum of squares, SS_T 551
 14.3.2. The within-participant sum of squares, SS_W 551
 14.3.3. The model sum of squares, SS_M 552
 14.3.4. The residual sum of squares, SS_R 553
 14.3.5. The mean squares 553
 14.3.6. The F-ratio 554
 14.3.7. The between-participants sum of squares 554
14.4. Assumptions in repeated-measures ANOVA 555
14.5. One-way repeated-measures ANOVA using SPSS 555
 14.5.1. Repeated-measures ANOVA: the general procedure 555
 14.5.2. The main analysis 555
 14.5.3. Defining contrasts for repeated measures 557
 14.5.4. Post hoc tests and additional options 558
14.6. Output for one-way repeated-measures ANOVA 559
 14.6.1. Descriptives and other diagnostics 559
 14.6.2. Assessing and correcting for sphericity: Mauchly’s test 560
 14.6.3. The main ANOVA 560
 14.6.4. Contrasts 563
 14.6.5. Post hoc tests 565
14.7. Effect sizes for repeated-measures ANOVA 566
14.8. Reporting one-way repeated-measures ANOVA 568
14.9. Factorial repeated-measures designs 568
 14.9.1. The main analysis 570
 14.9.2. Contrasts 573
 14.9.3. Simple effects analysis 573
 14.9.4. Graphing interactions 574
 14.9.5. Other options 574
14.10. Output for factorial repeated-measures ANOVA 576
15 Mixed design ANOVA (GLM 5)
15.1 What will this chapter tell me? ①
15.2. Mixed designs ②
15.3. Assumptions in mixed designs ②
15.4. What do men and women look for in a partner? ②
15.5. Mixed ANOVA in SPSS ②
15.5.1. Mixed ANOVA: the general procedure ②
15.5.2. Entering data ③
15.5.3. The main analysis ②
15.5.4. Other options ②
15.6. Output for mixed factorial ANOVA ③
15.6.1. The main effect of gender ②
15.6.2. The main effect of looks ②
15.6.3. The main effect of charisma ②
15.6.4. The interaction between gender and looks ②
15.6.5. The interaction between gender and charisma ②
15.6.6. The interaction between attractiveness and charisma ②
15.6.7. The interaction between looks, charisma and gender ③
15.6.8. Conclusions ③
15.7. Calculating effect sizes ③
15.8. Reporting the results of mixed ANOVA ②
15.9. Brian’s attempt to woo Jane ①
15.10 What next? ②
15.11 Key terms that I’ve discovered
15.12 Smart Alex’s tasks
15.13 Further reading

16 Multivariate analysis of variance (MANOVA)
16.1. What will this chapter tell me? ②
16.2. When to use MANOVA ②
16.3. Introduction
16.3.1. Similarities to and differences from ANOVA ②
16.3.2. Choosing outcomes ②
16.3.3. The example for this chapter ②
16.4. Theory of MANOVA ③
16.4.1. Introduction to matrices ③
16.4.2. Some important matrices and their functions ③
16.4.3. Calculating MANOVA by hand: a worked example ③
16.4.4. Principle of the MANOVA test statistic ④
16.5. Practical issues when conducting MANOVA ③
16.5.1. Assumptions and how to check them ③
16.5.2. What to do when assumptions are violated 643
16.5.3. Choosing a test statistic 643
16.5.4. Follow-up analysis 644
16.6. MANOVA using SPSS 644
16.6.1. General procedure of one-way ANOVA 644
16.6.2. The main analysis 645
16.6.3. Multiple comparisons in MANOVA 646
16.6.4. Additional options 646
16.7. Output from MANOVA 647
16.7.1. Preliminary analysis and testing assumptions 647
16.7.2. MANOVA test statistics 648
16.7.3. Univariate test statistics 649
16.7.4. SSCP matrices 650
16.7.5. Contrasts 652
16.8. Reporting results from MANOVA 652
16.9. Following up MANOVA with discriminant analysis 654
16.10. Output from the discriminant analysis 656
16.11. Reporting results from discriminant analysis 660
16.12. The final interpretation 660
16.13. Brian’s attempt to woo Jane 662
16.15. Key terms that I’ve discovered 663
16.16. Smart Alex’s tasks 664
16.17. Further reading 664

17 Exploratory factor analysis 665
17.1. What will this chapter tell me? 665
17.2. When to use factor analysis 666
17.3. Factors and components 667
17.3.1. Graphical representation 668
17.3.2. Mathematical representation 669
17.3.3. Factor scores 671
17.4. Discovering factors 674
17.4.1. Choosing a method 674
17.4.2. Communality 675
17.4.3. Factor analysis or PCA? 675
17.4.4. Theory behind PCA 676
17.4.5. Factor extraction: eigenvalues and the scree plot 677
17.4.6. Improving interpretation: factor rotation 678
17.5. Research example 682
17.5.1. General procedure 682
17.5.2. Before you begin 683
17.6. Running the analysis 686
17.6.1. Factor extraction in SPSS 688
17.6.2. Rotation 689
17.6.3. Scores 691
17.6.4. Options 691
17.7. Interpreting output from SPSS 692
17.7.1. Preliminary analysis 693
17.7.2. Factor extraction 696
17.7.3. Factor rotation 701
17.7.4. Factor scores 704
17.7.5. Summary 705
17.8. How to report factor analysis

17.9. Reliability analysis
17.9.1. Measures of reliability
17.9.2. Interpreting Cronbach's α (some cautionary tales)
17.9.3. Reliability analysis in SPSS
17.9.4. Reliability analysis output

17.10. How to report reliability analysis

17.11. Brian's attempt to woo Jane

17.12. What next?

17.13. Key terms that I've discovered

17.14. Smart Alex's tasks

17.15. Further reading

18 Categorical data

18.1. What will this chapter tell me?

18.2. Analysing categorical data

18.3. Theory of analysing categorical data
18.3.1. Pearson's chi-square test
18.3.2. Fisher's exact test
18.3.3. The likelihood ratio
18.3.4. Yates's correction
18.3.5. Other measures of association
18.3.6. Several categorical variables: loglinear analysis

18.4. Assumptions when analysing categorical data
18.4.1. Independence
18.4.2. Expected frequencies
18.4.3. More doom and gloom

18.5. Doing chi-square in SPSS
18.5.1. General procedure for analysing categorical outcomes
18.5.2. Entering data
18.5.3. Running the analysis
18.5.4. Output for the chi-square test
18.5.5. Breaking down a significant chi-square test with standardized residuals
18.5.6. Calculating an effect size
18.5.7. Reporting the results of chi-square

18.6. Loglinear analysis using SPSS
18.6.1. Initial considerations
18.6.2. Running loglinear analysis
18.6.3. Output from loglinear analysis
18.6.4. Following up loglinear analysis

18.7. Effect sizes in loglinear analysis

18.8. Reporting the results of loglinear analysis

18.9. Brian's attempt to woo Jane

18.10. What next?

18.11. Key terms that I've discovered

18.12. Smart Alex's tasks

18.13. Further reading

19 Logistic regression

19.1. What will this chapter tell me?

19.2. Background to logistic regression
19.3. What are the principles behind logistic regression? ③
 19.3.1. Assessing the model: the log-likelihood statistic ③
 19.3.2. Assessing the model: the deviance statistic ③
 19.3.3. Assessing the model: R and R² ③
 19.3.4. Assessing the contribution of predictors: the Wald statistic ②
 19.3.5. The odds ratio: exp(B) ④
 19.3.6. Model building and parsimony ②

19.4. Sources of bias and common problems ④
 19.4.1. Assumptions ②
 19.4.2. Incomplete information from the predictors ④
 19.4.3. Complete separation ③
 19.4.4. Overdispersion ④

19.5. Binary logistic regression: an example that will make you feel eel ②
 19.5.1. Building a model ①
 19.5.2. Logistic regression: the general procedure ①
 19.5.3. Data entry ①
 19.5.4. Building the models in SPSS ②
 19.5.5. Method of regression ②
 19.5.6. Categorical predictors ②
 19.5.7. Comparing the models ②
 19.5.8. Running the model ①
 19.5.9. Obtaining residuals ②
 19.5.10. Further options ②
 19.5.11. Bootstrapping ②

19.6. Interpreting logistic regression ②
 19.6.1. Block 0 ②
 19.6.2. Model summary ②
 19.6.3. Listing predicted probabilities ②
 19.6.4. Interpreting residuals ②
 19.6.5. Calculating the effect size ②

19.7. How to report logistic regression ②

19.8. Testing assumptions: another example ②
 19.8.1. Testing for linearity of the logit ③
 19.8.2. Testing for multicollinearity ③

19.9. Predicting several categories: multinomial logistic regression ③
 19.9.1. Running multinomial logistic regression in SPSS ③
 19.9.2. Statistics ③
 19.9.3. Other options ③
 19.9.4. Interpreting the multinomial logistic regression output ③
 19.9.5. Reporting the results ②

19.10. Brian’s attempt to woo Jane ①

19.11. What next? ①

19.12. Key terms that I’ve discovered

19.13. Smart Alex’s tasks

19.14. Further reading

20 Multilevel linear models ④

20.1. What will this chapter tell me? ①

20.2. Hierarchical data ②
 20.2.1. The intraclass correlation ②
 20.2.2. Benefits of multilevel models ②

20.3. Why multilevel models? ②

20.4. How to set up a multilevel model ②

20.5. Testing assumptions ②

20.6. A practical example ②

20.7. What to report ②

20.8. Additional topics ②

20.9. Further reading ④

20.10. Contemporary issues in multilevel modeling ④

21. Appendix A: A brief guide to SPSS ④

21.1. Getting started with SPSS ④

21.2. Using SPSS menus ④

21.3. The SPSS command language ④

21.4. Customizing SPSS ④

21.5. Using saved files ④

21.6. Accessing the SPSS help system ④

21.7. Other sources of help in SPSS ④

21.8. Further reading ④
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.3</td>
<td>Theory of multilevel linear models</td>
<td>819</td>
</tr>
<tr>
<td>20.3.1</td>
<td>An example</td>
<td>819</td>
</tr>
<tr>
<td>20.3.2</td>
<td>Fixed and random coefficients</td>
<td>820</td>
</tr>
<tr>
<td>20.4</td>
<td>The multilevel model</td>
<td>823</td>
</tr>
<tr>
<td>20.4.1</td>
<td>Assessing the fit and comparing multilevel models</td>
<td>825</td>
</tr>
<tr>
<td>20.4.2</td>
<td>Types of covariance structures</td>
<td>826</td>
</tr>
<tr>
<td>20.5</td>
<td>Some practical issues</td>
<td>827</td>
</tr>
<tr>
<td>20.5.1</td>
<td>Assumptions</td>
<td>827</td>
</tr>
<tr>
<td>20.5.2</td>
<td>Robust multilevel models</td>
<td>828</td>
</tr>
<tr>
<td>20.5.3</td>
<td>Sample size and power</td>
<td>829</td>
</tr>
<tr>
<td>20.5.4</td>
<td>Centring predictors</td>
<td>829</td>
</tr>
<tr>
<td>20.6</td>
<td>Multilevel modelling using SPSS</td>
<td>830</td>
</tr>
<tr>
<td>20.6.1</td>
<td>Entering the data</td>
<td>831</td>
</tr>
<tr>
<td>20.6.2</td>
<td>Ignoring the data structure: ANOVA</td>
<td>831</td>
</tr>
<tr>
<td>20.6.3</td>
<td>Ignoring the data structure: ANCOVA</td>
<td>836</td>
</tr>
<tr>
<td>20.6.4</td>
<td>Factoring in the data structure: random intercepts</td>
<td>837</td>
</tr>
<tr>
<td>20.6.5</td>
<td>Factoring in the data structure: random intercepts and slopes</td>
<td>841</td>
</tr>
<tr>
<td>20.6.6</td>
<td>Adding an interaction to the model</td>
<td>845</td>
</tr>
<tr>
<td>20.7</td>
<td>Growth models</td>
<td>849</td>
</tr>
<tr>
<td>20.7.1</td>
<td>Growth curves (polynomials)</td>
<td>850</td>
</tr>
<tr>
<td>20.7.2</td>
<td>An example: the honeymoon period</td>
<td>851</td>
</tr>
<tr>
<td>20.7.3</td>
<td>Restructuring the data</td>
<td>853</td>
</tr>
<tr>
<td>20.7.4</td>
<td>Running a growth model on SPSS</td>
<td>854</td>
</tr>
<tr>
<td>20.7.5</td>
<td>Further analysis</td>
<td>860</td>
</tr>
<tr>
<td>20.8</td>
<td>How to report a multilevel model</td>
<td>862</td>
</tr>
<tr>
<td>20.9</td>
<td>A message from the octopus of inescapable despair</td>
<td>863</td>
</tr>
<tr>
<td>20.10</td>
<td>Brian’s attempt to woo Jane</td>
<td>864</td>
</tr>
<tr>
<td>20.11</td>
<td>What next?</td>
<td>864</td>
</tr>
<tr>
<td>20.12</td>
<td>Key terms that I’ve discovered</td>
<td>865</td>
</tr>
<tr>
<td>20.13</td>
<td>Smart Alex’s tasks</td>
<td>865</td>
</tr>
<tr>
<td>20.14</td>
<td>Further reading</td>
<td>866</td>
</tr>
</tbody>
</table>

21 Epilogue: life after discovering statistics 867

21.1 | Nice emails | 867 |
21.2 | Everybody thinks that I’m a statistician | 868 |
21.3 | Craziness on a grand scale | 868 |
21.3.1	Catistics	868
21.3.2	Cult of underlying numerical truths	869
21.3.3	And then it got really weird	869

Glossary 870
Appendix 887
References 899
Index 908